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1. Introduction

As is well-known, the classical bi-Hamiltonian systems have played a significant

role in the research of partial differential equations [14], statistics and theoretical

mechanics. The conception of Nijenhuis operator on an associative algebra was

first proposed by Carinena during the investigation of bi-Hamiltonian systems [3].

However, the conception of the Nijenhuis operator on Lie algebras was introduced

by Nijenhuis in the study of a pseudo-complex manifold [16], which was used to

study the Poisson-Nijenhuis manifold, as well as the classical Yang-Baxter equation

[5,6], etc.

The Nijenhuis operator has a close connection with the well-known Rota-Baxter

operator. With the rise of Rota-Baxter algebras, the development of Nijenhuis

algebras has also received significant attention. In [11], Guo et al. investigated the

relationship between Nijenhuis algebras and NS algebras, as well as N-Dendriform

algebras. In [18], Bai et al. studied Nijenhuis operators on pre-Lie algebras. In [15],

Bibhash et al. introduced Nijenhuis Leibniz algebras, and studied the cohomology

theory of Nijenhuis Leibniz algebras.

In recent years, many experts and scholars have begun to research homological

theory on Rota-Baxter algebras. In [9], Guo and Lin introduced the conception
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of Rota-Baxter modules on Rota-Baxter algebras and proposed a characterization

of the representation theory of Rota-Baxter algebras. Subsequently, Zheng et al.

introduced the conception of Rota-Baxter paired modules [24] on (general) asso-

ciative algebras. They constructed and characterized Rota-Baxter paired modules

using integrals and antipode in Hopf algebras. In 2021, Guo, Lang and Sheng in-

troduced Rota-Baxter groups in [8]. Smooth Rota-Baxter operators on Lie groups

were proved to be differentiable, which, in turn, led to the derivation of the fac-

torization theorem of Semenov-Tian-Shansky for Lie groups via the factorization

theorem for Rota-Baxter Lie groups. Subsequently, the concept of Rota-Baxter

systems of groups [13] proposed by Zhonghua Li and Shukun Wang, and the con-

cept of Rota-Baxter skew braces [20] proposed by Ximu Wang, Chongxia Zhang

and Liangyun Zhang, were a generalization of Rota-Baxter groups.

With the development of Rota-Baxter algebras, Nijenhuis algebras have been

largely developed. Therefore, it is necessary to explore the connection between

Rota-Baxter paired modules and Nijenhuis paired modules to fill the research gap in

the above fields. The research background and content of this paper are summarized

in the diagram: the arrow with a citation above is the research background, and

the arrow with a question mark above is the main research content.

Rota-Baxter algebra

[9]

��

[15]
//
Nijenhuis algebra

[3]
oo

?

((

Rota-Baxter module
[24]

// Rota-Baxter
paired module

? //
Nijenhuis paired module

?
oo

?

hh

This paper is arranged and organized as follows: In Section 2, we introduce the

concept of Nijenhuis paired modules. In Section 3, we present the properties and

characterizations of Nijenhuis paired modules. In Section 4, we construct some

Nijenhuis paired modules from Hopf algebres, Hopf modules, dimodules and weak

Hopf modules.

The objects discussed in this paper are all considered on the field K. Here, id

denotes the identity map, and Sweedler′s notations [17] are used for algebras and

modules.

2. Basic definitions

Definition 2.1. A Rota-Baxter algebra [7] is an algebra A with a linear operator

P on A that satisfies the Rota-Baxter identity

(1) P (x)P (y) = P (P (x)y + xP (y) + λxy)
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for all x, y ∈ A, where λ called the weight, is a fixed element in the ground field

K of the algebra A.

Definition 2.2. Fix a λ ∈ K. Let A be an algebra and M a left A-module. A

pair (P, T ) of linear maps P : A → A and T : M → M is called a Rota-Baxter

paired operator [24] of weight λ on (A,M) or simply on M if

(2) P (a) · T (m) = T (P (a) ·m) + T (a · T (m)) + λT (a ·m)

for all a ∈ A,m ∈M .

Definition 2.3. A Nijenhuis algebra [3] is an algebra A with a linear operator

N on A that satisfies the Nijenhuis equation

(3) N(x)N(y) +N2(xy) = N(N(x)y + xN(y))

for all x, y ∈ A.

We give some examples of Nijenhuis algebras.

Example 2.4. (a) Let A be an associative algbera, take a ∈ A. Define two linear

map as follows:

La : A→ A,La(x) = ax;Ra : A→ A,Ra(y) = ya,

for all x, y ∈ A. Then La and Ra are Nijenhuis operators on A.

(b) Let (A,P ) be a Baxter algebra (that is, (A,P ) is a Rota-Baxter algebra with

weight 0). If P is idempotent, then (A,P ) is a Nijenhuis algebra.

(c) Let (A,µ) be an associative algebra, (A,∆) be a coassociative coalgebra. If the

following equation:

(4) ∆(ab) = ∆(a)b+ a∆(b)− µ(∆(a))⊗ b

holds, for all a, b ∈ A, we call (A,µ,∆) a Dendriform-Nijenhuis bialgebra [12].

Let (A,µ,∆) be a Dendriform-Nijenhuis bialgebra. Then (End(A), β) is a Nijenhuis

algebra [12, Proposition 3.2],

where

β : End(A)→ End(A), β(f) = id ∗ f.

(d) Let A be a bialgebra, H a Hopf algebra, and i : H → A, π : A → H be

two bialgebra maps satisfying π ◦ i = id. Then, by [10], Π ≡ id∗(i ◦ π ◦ S) is an

idempotent Rota-Baxter operator of weight −1 on the algebra End(A). Thus Π is

a Nijenhuis operator on End(A) by Definitions 2.1 and 2.3.

Here S denotes the antipode of Hopf algebra H, and “∗” denotes the convolutional

multiplication on the algebra End(A).
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3. Nijenhuis paired modules

Definition 3.1. Fix a λ ∈ K. Let A be an algebra and M a left A-module. A pair

(N,T ) of linear maps N : A → A and T : M → M is called a Nijenhuis paired

operator on (A,M) or simply on M if

(5) N(a) · T (m) = T (N(a) ·m) + T (a · T (m))− T 2(a ·m)

for all a ∈ A,m ∈ M . We then call the triple (M,N, T ) a Nijenhuis paired

A-module.

For a given linear operator T : M → M , if for every linear map N : A →
A, (M,N, T ) is a Nijenhuis paired A-module, then (M,T ) is called a generic

Nijenhuis paired module.

A Nijenhuis paired A-submodule V of Nijenhuis paired A-module (M,N, T )

is a submodule V of M such that T (V ) ⊆ V .

Let (M,N, T ) and (M ′, N ′, T ′) be Nijenhuis paired A-modules. A Nijenhuis

paired module map f : (M,N, T ) → (M ′, N ′, T ′) is a module map such that

f ◦ T = T ′ ◦ f .

Let f be a Nijenhuis paired module map from (M,N, T ) to (M ′, N ′, T ′). Then,

it is not difficult to prove that ker(f) and im(f) are Nijenhuis paired A-submodules

of M and M ′, respectively.

A right (generic) Nijenhuis paired A-module can be similarly defined.

Example 3.2. (a) Let A be an algebra regarded as a left A-module. If (A,N) is

a Nijenhuis algebra, then (A,N,N) is a Nijenhuis paired A-module.

(b) Let (M,N, T ) be a Rota-Baxter paired A-module of weight −1. If Rota-Baxter

paired operator T is idempotent, then (M,N, T ) is a Nijenhuis paired A-module by

Definitions 2.3 and 3.1.

(c) Let (M,N, T ) be a Nijenhuis paired A-module. Then (M,µN, µT ) is also a

Nijenhuis paired A-module, where µ ∈ K.

Lemma 3.3. Let M be a left A-module. Then (M,T ) is a generic Nijenhuis paired

A-module, if there exists an A-linear map T : M →M .

Proof. For every linear map N : A→ A, since T is an A-linear map, we have

N(a) · T (m) = N(a) · T (m) + a · T 2(m)− a · T 2(m)

= T (N(a) ·m) + T (a · T (m))− T 2(a ·m),

for any a ∈ A,m ∈ M . Hence, (M,T ) is a generic Nijenhuis paired A-module by

Definition 3.1. �
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Lemma 3.4. Let M be a left A-module, and T : M →M a K-linear map. Define

LM (A) := {a ∈ A | T (a ·m) = a · T (m),∀m ∈M}.

Then LM (A) is a subalgebra of A. Thus T is LM (A)-linear.

Proof. For any a, b ∈ LM (A),m ∈M, we have

T ((ab) ·m) = T (a · (b ·m)) = a · T (b ·m) = (ab) · T (m),

namely, ab ∈ LM (A). So LM (A) is a subalgebra of A, and T is LM (A)-linear. �

Theorem 3.5. Let M be a left A-module and T : M → M be a K-linear map.

Then (M,T ) is a generic Nijenhuis paired LM (A)-module.

Proof. It follows from the combining Lemmas 3.3 and 3.4. �

Proposition 3.6. Let (M,N, T ) be a Nijenhuis paired A-module. Then

(M, Ñ, T̃ ) is also a Nijenhuis paired A-module, where Ñ = −kid−N, T̃ = −kid−T ,

k ∈ K.

Proof. In fact, for any a ∈ A,m ∈M, we have

Ñ(a) · T̃ (m) = (−kid−N)(a) · (−kid− T )(m)

= (−ka−N(a)) · (−km− T (m))

= k2a ·m+ ka · T (m) + kN(a) ·m+N(a) · T (m),

T̃ (Ñ(a) ·m) = (−kid− T )((−kid−N)(a) ·m)

= (−kid− T ) · ((−ka−N(a)) ·m)

= (−kid− T ) · (−ka ·m−N(a) ·m)

= k2a ·m+ kT (a ·m) + kN(a) ·m+ T (N(a) ·m),

T̃ (a · T̃ (m)) = (−kid− T )(a · (−kid− T )(m))

= (−kid− T )(−ka ·m− a · T (m))

= k2a ·m+ ka · T (m) + kT (a ·m) + T (a · T (m)),

T̃ 2(a ·m) = (−kid− T )2(a ·m)

= (−kid− T )(−ka ·m− T (a ·m))

= k2a ·m+ kT (a ·m) + kT (a ·m) + T 2(a ·m).

Let (M,N, T ) be a Nijenhuis paired A-module. Then it is easy to see that

Ñ(a) · T̃ (m) = T̃ (Ñ(a) ·m) + T̃ (a · T̃ (m))− T̃ 2(a ·m).

Therefore, (M, Ñ, T̃ ) is a Nijenhuis paired A-module. �
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Proposition 3.7. Let (M,N, T ) be a Nijenhuis paired A-module. Then (M,N, φ−1Tφ)

is a Nijenhuis paired A-module, if there exists an automorphism of A-module φ :

M →M .

Proof. For any a ∈ A,m ∈M, we have

φ−1Tφ(N(a) ·m+ a · φ−1Tφ(m)− φ−1Tφ(a ·m))

= φ−1(T (N(a) · φ(m) + a · Tφ(m)− T (a · φ(m)))

= φ−1(N(a) · T (φ(m)))

= N(a) · φ−1Tφ(m).

Thus

N(a) · φ−1Tφ(m) = φ−1Tφ(N(a) ·m+ a · φ−1Tφ(m)− φ−1Tφ(a ·m)).

That is, (M,N, φ−1Tφ) is a Nijenhuis paired A-module. �

Proposition 3.8. Let (Mi, N, Ti) be a family of Nijenhuis paired A-modules, and⊕
i∈IMi denote the direct sum of A-modules Mi, i ∈ I. Define

T̃ :
⊕
i∈I

Mi →
⊕
i∈I

Mi, (mi) 7→ (Ti(mi)).

Then (
⊕

i∈IMi, N, T̃ ) is a Nijenhuis paired A-module.

Proof. For all a ∈ A, (mi) ∈
⊕

i∈IMi, we have

N(a) · T̃ (mi) = N(a) · (Ti(mi)) = (N(a) · Ti(mi))

= (Ti(N(a) ·mi) + Ti(a · Ti(mi)))− T 2(a ·mi)

= T̃ (N(a) · (mi)) + T̃ (a · T̃ (mi))− T̃ 2(a · (mi)).

Thus (
⊕

i∈IMi, N, T̃ ) is a Nijenhuis paired A-module. �

Proposition 3.9. Let H be a bialgebra with a counit ε, M be a left H-module, and

MH = {m ∈ M | h ·m = ε(h)m, ∀h ∈ H}. Then (MH , T ) is a generic Nijenhuis

paired H-module, if there exists a left H-module map T : M →M .

Proof. Since H is a bialgebra, ε is an algebra map. Hence MH is a left H-module.

For all h ∈ H,m ∈MH , we have

h · T (m) = T (h ·m) = T (ε(h)m) = ε(h)T (m),
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thus T (m) ∈MH , and

T (N(h) ·m+ h · T (m)− T (h ·m))

= T (ε(N(h)) ·m) + T (ε(h)T (m))− T 2(ε(h)m)

= ε(N(h))T (m) + ε(h)T 2(m)− ε(h)T 2(m)

= ε(N(h))T (m).

Namely,

N(h) · T (m) = T (N(h) ·m+ h · T (m)− T (h ·m)).

Hence (MH , T ) is a generic Nijenhuis paired H-module. �

Proposition 3.10. Let (M,N, T ) be a Nijenhuis paired A-module. Define a linear

map as follows:

T : End(M)→ End(M), T (f)(m) = f(T (m)).

Then (End(M), T , T ) is a Nijenhuis paired End(M)-module.

Proof. By Example 3.2, it suffices to show that (End(M), T ) is a Nijenhuis algebra.

As a matter of fact, for any f, g ∈ End(M),m ∈M, we have

(T (f)T (g))(m) = T (f)(g(T (m))) = f(T (g(T (m)))),

T ((T (f)g) + fT (g)− T (fg))(m)

= (T (f)g + fT (g)− T (fg))T (m)

= T (f)(g(T (m))) + fT (g)(T (m))− T (fg)(T (m))

= f(T (g(T (m)))) + f(g(T 2(m)))− fg(T 2(m))︸ ︷︷ ︸
= f(T (g(T (m)))).

Thus (End(M), T ) is a Nijenhuis algebra by Definition 2.3. �

Remark 3.11. In the above proposition, Nijenhuis operator can also be defined

as follows:

T : End(M)→ End(M), T (f)(m) = T (f(m)).

This is since for any f, g ∈ End(M),m ∈M, we have

(T (f)T (g))(m) = T (f)(T (g(m)) = T (f(T (g(m)))),
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and

T ((T (f)g) + fT (g)− T (fg))(m)

= T ((T (f)g) + fT (g)− T (fg)(m))

= T (T (f(g(m))) + f(T (g(m)))− T (f(g(m))))

= T 2(f(g(m))) + T (f(T (g(m))))− T 2(f(g(m)))

= T (f(T (g(m)))).

Namely,

T (f)T (g) = T ((T (f)g) + fT (g)− T (fg)).

Hence (End(M), T ) is a Nijenhuis algebra, and (End(M), T , T ) is a Nijenhuis paired

End(M)-module.

Proposition 3.12. Let (A,N) be a Nijenhuis algebra, and (M,N, T ) be a Nijenhuis

paired A-module. Define another binary operator ? on A by

a ? b = N(a)b+ aN(b)−N(ab),

and another operator . between A and M by

a . m = N(a) ·m+ a · T (m)− T (a ·m),

for a, b ∈ A,m ∈M. Then the following conclusions hold.

(a) T (a . m) = N(a) · T (m).

(b) (M,.) is an (LM (A), ?)-module.

(c) (M,N, T, .) is a Nijenhuis paired (LM (A), ?)-module.

Proof. (a) Since (M,N, T ) is a Nijenhuis paired A-module, we have

T (a . m) = T (N(a) ·m+ a · T (m)− T (a ·m))

= N(a) · T (m)

for any a, b ∈ A,m ∈M .

(b) In fact, for any a, b ∈ LM (A),m ∈ M, it suffices to show that (a ? b) . m =
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a . (b . m) :

(a ? b) . m = N(a ? b) ·m+ (a ? b) · T (m)− T ((a ? b) ·m)

= (N(a)N(b)) ·m+ (N(a)b+ aN(b)−N(ab)) · T (m)

− T ((N(a)b+ aN(b)−N(ab)) ·m

= (N(a)N(b) ·m+ (N(a)b) · T (m) + (aN(b)) · T (m)

−N(ab) · T (m))− T ((N(a)b+ aN(b)−N(ab)) ·m)

= (N(a)N(b) ·m+ (N(a)b) · T (m) + (aN(b)) · T (m)

−N(ab) · T (m)− (N(a)b) · T (m))− (aN(b)) · T (m)

+N(ab) · T (m) = (N(a)N(b)) ·m,

a . (b . m) = a . (N(b) ·m+ b · T (m)− T (b ·m))

= (N(a)N(b)) ·m+ (N(a)b) · T (m)−N(a) · T (b ·m)

+ a · T (N(b) ·m) + a · T (b ·m)− a · T 2(b ·m)− T ((aN(b) ·m)

− T (ab · T (m)) + T (a · T (b ·m))

= N(a)N(b) ·m+N(a)b ·m−N(a)b · T (m) + aN(b) · T (m)

+ ab · T 2(m)− ab · T 2(m)− aN(b) · T (m)− ab · T 2(m)

+ ab · T 2(m) = (N(a)N(b)) ·m.

(c) It follows that (M,.) is an (LM (A), ?)-module by (b), and for any a ∈ LM (A),m ∈
M , we can obtain the following equation by (a):

N(a) . T (m) = N2(a) · T (m) +N(a) · T 2(m)− T (N(a) · T (m))

= N2(a) · T (m) +N(a) · T 2(m)− T 2(a . m)

= T (N(a) . m) + T (a . T (m))− T 2(a . m).

Hence (M,N, T, .) is a Nijenhuis paired (LM (A), ?)-module. �

Proposition 3.13. Let M be a left A-module, 0 6= ξ ∈ A. Define a linear map as

follows:

Nξ : A→ A,Nξ(a) = ξa, Tξ : M →M,Tξ(m) = ξ ·m.

Then (M,Nξ, Tξ) is a Nijenhuis paired A-module.

Furthermore, if A is a commutative algebra, then (M,Tξ) is a generic Nijenhuis

paired A-module.

Proof. In fact, for any a ∈ A,m ∈M, we have

Nξ(a) · Tξ(m) = ξa · ξ ·m = ξaξ ·m,
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Tξ(Nξ(a) ·m) + Tξ(a · Tξ(m)) = Tξ(ξa ·m) + Tξ(aξ ·m)

= ξ2a ·m+ ξaξ ·m,

T 2
ξ (a ·m) = Tξ(ξa ·m) = ξ2a ·m,

so

Nξ(a) · Tξ(m) + T 2
ξ (a ·m) = Tξ(Nξ(a) ·m) + Tξ(a · Tξ(m)).

Namely, (M,Nξ, Tξ) is a Nijenhuis paired A-module.

When A is commutative, it is easy to see that Tξ is A-linear. So, according to

Lemma 3.3, we know that (M,Tξ) is a generic Nijenhuis paired A-module. �

Remark 3.14. Let H be a weak bialgebra (it is both an algebra and a coalgebra

satisfying the weak condition “∆(xy) = ∆(x)∆(y) but ∆(1H) 6= 1H ⊗ 1H for

x, y ∈ H”, see [1]). Then, H∗ and HR are algebras, where H∗ denotes the linear

dual algebra of H, and HR the source algebra of H in [1] (that is, HR = ImuR,

where uR : H → H is given by uR(h) = 11ε(h12)). Moreover, we have the following

conclusions.

(1) H is a left H∗-module by the defined action: f ⇀ h =< f, h2 > h1, for

h ∈ H, f ∈ H∗.
Therefore, by the above proposition, for any nonzero element ξ ∈ H∗, we know

that (H,Nξ, Tξ) is a Nijenhuis paired H∗-module.

Here Nξ : H∗ → H∗, Nξ(f) = ξf, Tξ : H → H,Tξ(h) = ξ ⇀ h.

(2) H is a left HR-module by the multiplication of H. Thus, by the above propo-

sition, for any nonzero element χ ∈ HR, we know that (H,Nχ, Tχ) is a Nijenhuis

paired HR-module.

Here Nχ : HR → HR, Nχ(x) = χx, Tχ : H → H,Tχ(h) = χh.

In the following, we establish the relations between Nijenhuis paired modules

and Rota-Baxter paired modules.

Proposition 3.15. Let M be a left A-module, and N : A → A, T : M → M two

linear maps. Then the following conclusions hold.

(a) If T 2 = 0, then (N,T ) is a Nijenhuis paired operator on the A-module M

if and only if (N,T ) is a Rota-Baxter paired operator of weight 0 on the

A-module M .

(b) If T 2 = T , then (N,T ) is a Nijenhuis paired operator on the A-module M

if and only if (N,T ) is a Rota-Baxter paired operator of weight −1 on the

A-module M .
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(c) If T 2 = id, then (N,T ) is a Nijenhuis paired operator on the A-module M

if and only if (N + id, T + id) is a Rota-Baxter paired operator of weight

−2 on the A-module M .

(d) If T 2 = id, then (N,T ) is a Nijenhuis paired operator on the A-module M

if and only if (N,T ) is a modified Rota-Baxter paired operator [4] of weight

−1 on the A-module M .

Proof. (a) If T 2 = 0, then the conclusion holds by Definitions 2.2 and 3.1.

(b) If T 2 = T , and (M,T ) is a Nijenhuis paired operator on the A-module M , we

have

N(a) · T (m) = T (N(a) ·m) + T (a · T (m))− T (a ·m)

for all a ∈ A,m ∈ M . Namely, (N,T ) is a Rota-Baxter paired operator of weight

−1 on the A-module M .

Similarly, the converse holds.

(c) In fact, for any a ∈ A,m ∈M, we have

(N + id)(a) · (T + id)(m) = N(a) · T (m) +N(a) ·m+ a · T (m) + a ·m,

and

(T + id)((N + id)(a) ·m) + (T + id)(a · (T + id)(m))− 2(T + id)(a ·m)

= (T + id)(N(a) ·m+ a ·m)

+ (T + id)(a · T (m) + a ·m)− 2(T (a ·m) + a ·m)

= T (N(a) ·m) + T (a ·m) +N(a) ·m+ a ·m+ T (a · T (m))

+ T (a ·m) + a · T (m) + a ·m− 2T (a ·m)− 2a ·m

= T (N(a) ·m) + a · T (m) +N(a) ·m+ T (a · T (m)),

if (N + id, T + id) is a Rota-Baxter paired operator of weight −2 on the A-module

M , then, according to T 2 = id, we have

N(a) · T (m) + T 2(a ·m) = T (N(a) ·m) + T (a · T (m)).

Namely, (N,T ) is a Nijenhuis paired operator on the A-module M .

Similarly, the converse holds.

(d) If (N,T ) is a Nijenhuis paired operator on the A-module M , then, by T 2 = id,

we have

N(a) · T (m) = T (N(a) ·m) + T (a · T (m))− a ·m

for any a ∈ A,m ∈ M . Namely, (N,T ) is a modified Rota-Baxter paired operator

of weight −1.

The converse can be similarly proved. �
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4. Constructions of Nijenhuis paired modules

In this section, we construct some Nijenhuis paired modules from Hopf algebres,

Hopf modules, dimodules and weak Hopf modules.

4.1. The constructions on Hopf algebras.

Definition 4.1. (a) Let H be a bialgebra with a counit ε, and A an algebra.

If (A, ·) is a left H-module, which satisfies the following conditions:

(i) h · (ab) = (h1 · a)(h2 · b),
(ii) h · (1A) = ε(h)1A,

then A is called left H-module algebra.

(b) Let A be a left H-module algebra, and define a smash product A#H =

A⊗H as a vector space with the following product:

(a#h)(b#g) = a(h1 · b)#h2g.

Then A#H is an associative algebra with unity 1A#1H by [17].

Note that A and H are subalgebras of A#H.

For a given bialgebra H, if there exists an element x ∈ H satisfying hx = ε(h)x

for any x ∈ H, then x is called a left integral [17].

Furthermore, if H is a finite dimensional semisimple Hopf algebra, then there

exists a left integral e, such that ε(e) = 1 by [17, Theorem 5.18].

The following lemma can be seen in [24, Corollary 3.2].

Lemma 4.2. Let H be a finite dimensional semisimple Hopf algebra with a left

integral e, and M a left H-module. Define a linear map as follows:

T : M →M,T (m) = e ·m.

Then T 2 = T , and (M,T ) is a generic Rota-Baxter paired H-module of weight −1.

Proposition 4.3. Let H be a finite dimensional semisimple Hopf algebra with a

left integral e, and M a left H-module. Define a linear map as follows:

T : M →M,T (m) = e ·m.

Then (T (M), T ) is a generic Nijenhuis paired H-module.
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Proof. It follows that T is idempotent by Lemma 4.2, thus T (T (M)) ⊆ T (M).

Moreover for any h ∈ H,m ∈M , and for every linear map N : H → H, we have

T (N(h) · T (m)) + T (h · T 2(m))− T 2(h · T (m))

= T (N(h)e ·m) + T (he ·m)− T (he ·m)

= eN(h)e ·m+ ehe ·m− ehe ·m

= eN(h)e ·m = ε(N(h))e ·m

= N(h)e ·m = N(h) · T (m)

= N(h) · T 2(m).

Thus, (T (M), T ) is a generic Nijenhuis paired H-module. �

Proposition 4.4. (1) Let H be a finite dimensional semisimple Hopf algebra

with a left integral e. Then the following conclusions hold.

(a) Let M be a left H-module. Define a linear map as follows

T : M →M,T (m) = e ·m.

Then (M,T ) is a generic Nijenhuis paired H-module.

(b) Let A#H be a smash product. Define the following linear map:

T̃ : A#H → A#H, (a#h) 7→ e1 · a#e2h.

Then (A#H, T̃ ) is a generic Nijenhuis paired H-module, whose module

structure is given by its multiplication.

(2) Let A#H be a smash product. Define the following linear map:

T̂ : A#H → A#H, (a#h) 7→ a#he.

Then (A#H, T̂ ) is a generic Nijenhuis paired A-module, whose module

structure is given by its multiplication.

Proof. (a) It follows by Lemma 4.2 and Example 3.2.

(b) It is easy to see that T̃ (a#h) = (1#e)(a#h) = e(a#h), so (b) holds by (a).

(2) It is easy to find that T̂ is a left A-module map, so the conclusion (c) holds by

Lemma 3.3. �

4.2. The constructions on Hopf modules.

Definition 4.5. Let H be a bialgebra. Then M is called a left H-Hopf mod-

ule [17] if M is a left H-module and a left H-comodule satisfying the following

condition:

(6) ρ(h ·m) = h1m(−1) ⊗ h2 ·m(0)
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for all h ∈ H,m ∈M.

Proposition 4.6. Let H be a Hopf algebra with antipode S, M a left H-Hopf

module, and N : H → H an algebra map. Define a linear map as follows:

T : M →M,m 7→ S(m(−1)) ·m(0).

Then (M,N, T ) is a Nijenhuis paired H-module if and only if T is a left N(H)-

module map.

Proof. In fact, for any h ∈ H,m ∈M, we have

T (h ·m) = S(h1m(−1)) · (h2 ·m(0)) = S(m(−1))S(h1)h2 ·m(0)

= ε(h)S(m(−1)) ·m(0) = ε(h)T (m).

Thus, we have
T (N(h) ·m+ h · T (m)− T (h ·m))

= ε(N(h))T (m) + ε(h)T 2(m)− ε(h)T 2(m)

= ε(N(h))T (m).

Assume that (M,N, T ) is a Nijenhuis paired H-module. Then, by the above proof,

we obtain that

N(h) · T (m) = ε(N(h))T (m) = T (N(h) ·m)

for any h ∈ H,m ∈M , so T is a left N(H)-module map.

Conversely, the proof is obvious. �

Remark 4.7. Assume that M is a left H-Hopf module algebra. Then, by [10,

Theorem 2.4], (M,T ) is a Rota-Baxter algebra of weight −1, where T is given as

in the above proposition. Since M is a Hopf module, we easily prove that T 2 = T .

Thus (M,T, T ) is a Nijenhuis paired M -module by Example 3.2.

4.3. The constructions on dimodules.

Definition 4.8. Let H be a bialgebra, and M a left H-module as well as a right H-

comodule. Then M is called a left, right H-dimodule [2] if the following condition

is satisfied:

(7) ρ(h ·m) = h ·m(0) ⊗m(1)

for all h ∈ H,m ∈M.

Proposition 4.9. Let H be a bialgebra, M a left, right H-dimodule, 0 6= τ ∈ H∗.
Define a linear map as follows:

T : M →M,T (m) = m(0)τ(m(1)).
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Then (M,T ) is a generic Nijenhuis paired H-module.

Proof. Since M is a left, right H-dimodule, we have

T (h ·m) = (h ·m)(0)τ((h ·m)(1)) = h ·m(0)τ(m(1)) = h · T (m)

for any h ∈ H,m ∈ M. Namely, T is a left H-module map, so (M,T ) is a generic

Nijenhuis paired H-module by Lemma 3.3. �

Remark 4.10. (1) Let (H,σ) be a Long skew bialgebra. Then, by [21], (H,⇀,∆)

is a left, right H-dimodule by the defined action: x ⇀ h = σ(h2, x)h1, for x, h ∈ H.

Therefore, by the above proposition, for any nonzero element τ ∈ H∗, we know

that every Long skew bialgebra (H,σ) can induce a generic Nijenhuis paired H-

module (H,T ) naturally, where T (h) = h1τ(h2), for h ∈ H.

(2) Let (H,σ) be a coquasitriangular Hopf algebra. Then, by [23], (H,�,∆) is

a left, right H-dimodule by the defined action: x� h = σ(x, h1)h2, for x, h ∈ H.

Therefore, by the above proposition, for any nonzero element τ ∈ H∗, we know

that every coquasitriangular Hopf algebra (H,σ) can induce a generic Nijenhuis

paired H-module (H,T ), where T (h) = h1τ(h2), for h ∈ H.

4.4. The constructions on weak Doi-Hopf modules.

Definition 4.11. Let H be a weak bialgebra, and A a weak right H-comodule

algebra. We call M a weak right (A,H)-Doi-Hopf module [24] if M is a right

A-module and a right H-comodule satisfying the following condition:

(8) ρ(m · a) = m(0) · a(0) ⊗m(1)a(1)

for all m ∈M,a ∈ A.

The following lemma can be found in [24].

Lemma 4.12. Let H be a weak Hopf algebra, A a weak right H-comodule algebra,

and M a weak right (A,H)-Doi-Hopf module. If there exist a weak right H-comodule

algebra map φ : H → A and two linear maps defined as follows:

(9) EA : A→ A, a 7→ a(0)φ(S((a(1))),

(10) EM : M →M,m 7→ m(0) · φ(S(m(1))),

then we have the following conclusions:

(a) (M,EA, EM ) is a Rota-Baxter paired right A-module of weight −1,

(b) (A,EA) is a Rota-Baxter algebra of weight −1.
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Proposition 4.13. Let H be a weak Hopf algebra, A a weak right H-comodule

algebra, and M a weak right (A,H)-Doi-Hopf module. If there exists a weak right

H-comodule algebra map φ : H → A, then the following conclusions hold by the

above defined maps EA, EM .

(a) (M,EA, EM ) is a Nijenhuis paired A-module.

(b) (A,EA) is a Nijenhuis algebra.

Proof. (a) By the proof of [24, Theorem 3.15], we have

EM (EM (m) · a) = EM (m) · EA(a)

for all m ∈ M,a ∈ A. Moreover we have EA(1A) = 1A by [22, Lemma 3.2], so

E2
M = EM . Hence, by Lemma 4.12 and Example 3.2, we can prove (M,EA, EM )

is a Nijenhuis paired A-module.

(b) Obviously, every given weak right H-comodule algebra A is a weak right (A,H)-

Doi-Hopf module, whose module structure is given by its multiplication. Again by

the above proof, we know that EA is idempotent. Therefore, (A,EA) is a Nijenhuis

algebra by Lemma 4.12 and Example 2.4. �

Remark 4.14. Let H be a weak Hopf algebra. Then H is a weak right H-comodule

algebra, whose module structure is given by its multiplication and comodule struc-

ture is given by its comultiplication.

Obviously, id : H → H is a weak right H-comodule algebra map, so (H,EH) is

a Nijenhuis algebra by Proposition 4.13.

In fact, the map EH is defined by EH(h) = h1S(h2), for h ∈ H, which is exactly

a source map given in [1] and [19].
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